ReferatFolder.Org.Ua — Папка українських рефератів!


Загрузка...

Головна Географія фізична. Геофізика. Геологія. Геодезія. Геоморфологія → Застосування нарисної геометрії у геодезії

Розділ. І . Метод проекцій з числовими відмітками, проекції точки

1.1 Суть та область застосування метода проекцій з числовими відмітками

Метод проекцій з числовими відмітками /позначками/ застосовується при зображенні рельефа, земної поверхні та проектуванні на ній різних земних споруджень.

Суть методу проекцій з числовими відмітками полягає в тому, що об\'єкт, наприклад ділянка земної поверхні, ортогонально проектується тільки на одну, як правило, горизонтальну площину проекцій, При цьому оборотність креслення досягається тим, що поряд з проекціями характерних точок об\'єкта проставляються числові відмітки, які вказують, на скільки одиниць довжини віддалені характерні точки об\'єкта від горизонтальної площини проекцій.

Пояснимо це на такому прикладі /рис. 1.1./. Нехай трикутник AВС (∆ АВС) являє собою частину площини земного укоса. Ортогонально проектуємо ∆ АВС на горизонтальну площину проекцій π0 , яку в проекціях з числовими відмітками називають основною площиною, або площиною нульового, рівня. Для цього через вершини ∆ ABC проводимо перпендикулярно до π0 проецюючі прямі, в перетині яких з π0 одержимо точки А4 , В5 , С4 , що являють собою проекції вершин ∆ ABC. 3\'єднавши точки А4 , В5, С4 відрізками прямих ліній, одержимо ортогональну проекцію ∆АВС на площині π0.

Для визначення положення точок А , В та С відносно основної площини ∆АВС та площину π0 віднесемо до просторової прямокутної системи координат Оxyz , розташованої таким чином, щоб дві осі координат Ox та Оy знаходились в основній площині π0.

Положення точок А4 , В5 та C5 на основній площині π0 визначається двома координатами - х та y . Наприклад, координати х , у точки А з урахуванням вибраної масштабної одиниці, наведеної на рис. 1.1., мають такі величини: хА = 8,5; уА = 2. Це записується так: А4 /8,5; 2/. Проте по двох координатах точки об\'єкта або по одній її проекції неможливо визначити положення точка в просторі.

Для визначення положення точок об\'єкта в просторі необхідно знати величини їх третьої координати - координати Z або мати другу ортогональну проекцію об\'єкта. Маючи координати х , у , z точок А , В та С , можна визначити їх положення, а отже, і положення л ABC в просторі відносно площини π0 . Координата z вказує на відстань точок об\'єкта до горизонтальної площини π0, тобто визначає висоти цих точок.

Враховуючи, що в проекціях з числовими відмітками об\'єкт проектується тільки на одну площину проекцій, а одна проекція на визначає положення об\'єкта в просторі, другу фронтальну проекцію, яка дозволяє визначити недостаючу координату z , замінюють числами /числовими відмітками/, що позначають висоти точок відносно площини проекцій π0 . Числові відмітки проставляють у вигляді індекса справа внизу від позначення горизонтальних проекцій точок об\'єкта.

На рис. 1.1. координати Z точок А , В та С : zА= 4, ZВ = 5, Z С = 4. Таким чином, А4 означав, що точка А знаходиться, від основної площини π0 на віддалі, що дорівнює 4 одиницями вибраного масштаба.

Очевидно, що при доповненні горизонтальних проекцій точок об\'єкта їх числовими відмітками, креслення в проекціях з числовими відмітками стає оборотним, тобто таке креслення дає можливість визначити положення будь-якої точки об\'єкта відносно площини проекцій або відносно іншої точки об\'єкта.

У геодезії за допомогою методу проекцій з числовими відмітками зображають рельєф місцевості, що дозволяє виконувати інженерно-геодезичну розвідку і розбивку споруджень, а в гірництві та геології - вирішувати різноманітні метричні задачі. Цей метод використовують також для зображення і проектування на земній поверхні різних меліоративних та гідротехнічних споруд /греблі, дамби, насипи, виїмки, штучні і регуляційні споруди, меліоративні канали/і інженерно-будівельних споруджень /котловани, будівельні майданчики, мости, тунелі, дорожні естакади/.

Основні переваги методу проекцій з числовими відмітками: простота в побудові зображення об\'єкта /найбільш простий метод проектування - ортогональне проектування об\'єкта тільки на одну площину проекцій/; зручність у визначенні висотних розмірів об\'єкта, поданих у вигляді числових відміток його характерних точок і відносна простота розв\'язування метричних задач. До недоліків слід віднести недостатній наочність зображання, а також необхідність у деяких випадках доповнити основне зображення вертикальними перерізами /так званими профілями/.

1.2 Проекції точки. План

На комплексному кресленні /рис. 1.2/віддаль точки А від горизонтальної площини проекцій визначається відрізком А\"Ах , тобто координатою z точка А : А\"Ах =ZА. Довжина відрізка А\"Ах -це висота точки А або перевищення її відносно горизонтальної площини проекцій. На рис. 1.1. висота точки А з урахуванням масштабної одиниці дорівнює 4, тобто точка А має координату ZА= 4.

У методі проекцій з числовими відмітками проекції точок можна розглядати як горизонтальні проекції комплексного креслення.

На рис. 1.3. зображена горизонтальна проекція тієї ж точки А, що і на рис. 1.2. яка визначена координатами х та у точки А : А4 (х,у). Недостаючу координату Z точки А одержимо, вимірюючи довжину відрізка А\"Ах на комплексному кресленні /див. рис. 1.2/: z = А\"Ах = 4. Цю висоту точки А , що дорівнює 4 і вказує на віддаль точки А від площини π0 , записуємо у вигляді числової відмітки. Вона проставляється поряд з горизонтальною проекцією точки А : А4 , де 4 - числова відмітка точки А .

Числові значення висот точок, що вказують на віддаль точок від горизонтальної площини проекцій /основної площини/, називають числовими відмітками або просто відмітками точок.

Очевидно, що числова відмітка точки разом з її горизонтальною проекцією становить оборотне креслення точки, одержане при її проектуванні на одну площину проекцій, оскільки числова відмітка замінює проекцію точки А на вертикальну площину проекцій, яку можна не відтворювати.

У проекціях а числовими відмітками проекцією точки називається. Її ортогональна проекція на основну площину, що супроводжується числовими відмітками, які вказують на віддаль точки від цієї ж основної площини. При цьому слід пам\'ятати, що ортогональні проекції точок можуть не мати літерних позначень. В цьому випадку поряд з проекціями точок проставляються тільки їх числові відмітки.

Числові відмітки можуть бути як додатними, так і від\'ємними.

Проілюструємо це на рис. 1.4. де побудовані прямокутні ізометричні проекції точок з урахуванням одиниці масштаба по заданих координатах точок: А /3, 2, 3/; С /2, 3,0/; В /4, З, -З/.

Далі виконуємо такі дії:

1. Через аксонометричні осі Ох та Оу проводимо основну площину π0

2. Спроектуємо точки А , В та С на площину π0 одержимо горизонтальні проекції точок А , В та С.

3. Поряд з горизонтальними проекцїями точок проставляємо їх числові відмітки з урахуванням одиниці масштаба /рис. 1.4/. При цьому точка А , яка розташована вище площини π0, має додатну числову відмітку: 3 - числова відмітка точки А ; точка В , яка розташована нижче площини π0 , має від\'ємну числову відмітку; -З - числова відмітка точки В; точка С , яка знаходиться в площні π0 , має числову відмітку, що дорівнює нулю.